
Quantum Computing
(in way too short a time)

Riccardo Pucella

April 2021

♫ It's a small world... ♫

In the beginning...

David Deutsch, Quantum theory, the Church–Turing principle and the
universal quantum computer (1985)

Investigates a physical-system version of the Church-Turing thesis:
Every finitely realizable physical system can be perfectly simulated by a universal
model computing machine operating by finite means’.

He proposes a computational model based on quantum physics ("quantum
computing") as such a universal computing machine

From proposal to … reality?

Classical computation

From proposal to … reality?

Classical computation

Quantum computation

?

(1)

Quantum bits

Bits

The basic element of information in classical computation is the bit

A bit is a "thing" that has two states that can be distinguished

- 0 or 1
- ON or OFF
- either of two configurations of electric charges on metal plates

Bits can be physically realized in many different ways

- talk to a computer engineer

For computations, we don't care how bits are realized, just that they can be

- and that you can physically realize operations on such bits

Quantum bits

In quantum computing, the basic element of information is the quantum bit (qbit)

A qbit is a "thing" that has a state

- state of a qbit is a vector in ℂ2

ℂ2 has a basis — two vectors from which you can derive all others by linearity

- Write them |0〉 and ⎸1〉
- Notation suggest they will play the role of classical 0 and classical 1

The state of a qbit is a vector a⎸0〉 + b|1〉 e.g., 0.6|0〉 + 0.8|1〉

Can be represented by a column vector:

We normalize states to be unit vectors (length 1) for technical reasons

Quantum bits

In quantum computing, the basic element of information is the quantum bit (qbit)

A qbit is a "thing" that has a state

- state of a qbit is a vector in ℂ2

ℂ2 has a basis — two vectors from which you can derive all others by linearity

- Write them ⎸0〉 and ⎸1〉
- Notation suggest they will play the role of classical 0 and classical 1

The state of a qbit is a vector a|0〉 + b|1〉 e.g., 0.6|0〉 + 0.8|1〉

Can be represented by a column vector:

We normalize states to be unit vectors (length 1) for technical reasons

The quantum state of a qubit is a vector of unit length in
a two-dimensional complex vector space

Superposed states

A state such as 0.6|0〉 + 0.8|1〉 is a superposition of |0〉 and |1〉

- think of it as being in a state that's both |0〉 and |1〉 at the same time
but maybe a bit more |1〉 than it is |0〉?

That's the key to why quantum computation is interesting: the state of a qbit can
be both |0〉 and |1〉 at the same time

It gives us a lot more possible intermediate results that we can use to encode
useful information during the computation

- not just |0〉 and |1〉, but combinations of |0〉 and |1〉
- how we use those intermediate results is the "art" of quantum programming

Wait… but what's a qbit really?

Well, what's a bit? It's a concept. It can be realized physically. Somehow.

You can realize qbits with chilled superconductors wires, laser-trapped ions,
photons. ... (Or so they tell me.)

1. What do |0〉 and |1〉 mean?
Depends on the implementation — they generally correspond to observable
physical states (trajectory of a photon, say)

2. Why is a state a vector in ℂ2?
Excellent question — it took 25 years in the early 20th century and the
greatest physicists of the time to develop a quantum theory that explains this

(2)

Quantum logic gates

Classical logic gates

In the classical world, logic gates represent the operations you can perform on bits
— basically, they're functions from Boolean values to Boolean values.

They can be physically realized, and how they are realized depends on how bits
are realized

Classical computation = bits + Boolean logic

Quantum computation = qbits + ??

The NOT quantum gate

What would a NOT gate look like in the quantum world?

If |0〉 and |1〉 play the role of 0 and 1, then:

NOT |0〉 = |1〉
NOT |1〉 = |0〉

What if the state is superposed?

We extend linearly:

NOT a|0〉 + b|1〉 = a NOT |0〉 + b NOT |1〉
= a|1〉 + b|0〉

NOT

Matrix representation of the NOT gate

NOT is linear operator that transforms a vector in ℂ2 into a vector in ℂ2:

 NOT =

We know we can represent such a transformation by a matrix:

=

The Hadamard gate

H |0〉 = (|0〉 + |1〉) / √2
H |1〉 = (|0〉 - |1〉) / √2

Again, extends by linearity to superposed states:

H a|0〉 + b|1〉 = a (|0〉 + |1〉) / √2 + b (|0〉 - |1〉) / √2

= (a + b) / √2 |0〉 + (a - b) / √2 |1〉

As a matrix:

H =

H

The Hadamard gate

Check: HH =

So H takes a state such as |0〉 and "mixes it up" but you can still recover |0〉

The rough way many such algorithms work is to first use Hadamard gates to
“spread out” in quantum states like ∣0⟩ + ∣1⟩ (or many-qubit analogs), i.e., in
superpositions of multiple 2 computational basis states.

At the end of the algorithm they use clever patterns of cancellation and
reinforcement to bring things back together again into one (or possibly a few, in
the many-qubit case) computational basis state, containing the desired answer.

H H

Exercise left to the reader

What does this do to a qbit?

 a|0〉 + b|1〉 → a|0〉 - b|1〉

H NOT H

General (single qbit) quantum logic gates

A quantum logic gate is any unitary matrix over ℂ2

- Unitary : takes unit vectors in ℂ2 to unit vectors in ℂ2

- multiplying it by its conjugate transpose gives the identity

E.g.:

 Y = Z = Rotation by 𝜃 =

Any unitary matrix can be a quantum logic gate

We usually restrict to a finite set of gates that are universal

(3)

Observations

Measurement "in the computational basis"

In the real world, you cannot observe (measure) a superposed state. When you
measure a qbit, it collapses to |0〉 or |1〉. Welcome to quantum mechanics.

Measurement "in the computational basis":

- If a qbit is in state a|0〉 + b|1〉 and you measure it, you get |0〉 with probability
|a|2 and |1〉 with probability |b|2

The outcome of measurement is classical information: |0〉 or |1〉

Measurement is the last step of a quantum computation

H NOT H

Example

Say that in the midst of a computation you produce one of
 (|0〉 + |1〉) / √2 or (|0〉 - |1〉) / √2

If you measure them, you cannot distinguish them — you get |0〉 and |1〉 both with
probability 0.5.

But if we run them through an Hadamard gate and then measure, we get |0〉 with
probability 1 in one case and |1〉 with probability 1 in the other case.

(4)

Multi-qbit gates

Controlled-NOT gate

Here's an example of a 2-qbit logic gate:

- if control qbit is |1〉, the target qbit is flipped

- if control qbit is |0〉, the target qbit is unflipped.

What is the state of a 2-qbit system? It's a pair of states of each qbit

- it's a vector in ℂ2 x ℂ2 = ℂ4

- basis of ℂ4 = B x B where B is a basis of ℂ2

- so a basis of ℂ4 is |00〉, |01〉, |10〉, and |11〉

If q1 is a|0〉 + b|1〉 and q2 is c|0〉 + d|1〉 , then
(q1, q2) = q1q2 = ac|00〉 + ad|01〉 + bc|10〉 + bd|11〉 (a unit vector in ℂ4)

Controlled-NOT gate

CNOT |00〉 = |00〉
CNOT |01〉 = |01〉
CNOT |10〉 = |11〉
CNOT |11〉 = |10〉

CNOT |x,y〉 = |x, y ⊕ x〉

Extend to superposed states by linearity

CNOT a|00〉 + b|01〉 + c|10〉 + d|11〉 = a|00〉 + b|01〉 + d|10〉 + c|01〉

Things get interesting when the control qbit, say, is in a superposed state:

 CNOT (|0〉 + |1〉 / √2)(|0〉 - |1〉 / √2) = (|0〉 - |1〉 / √2)(|0〉 - |1〉 / √2)

The control bit changes, the target bit remains the same

Generalize to circuits with more qbits

The Toffoli gate

Think of it as a controlled AND

- if both control qbits are |1〉 the target qbit is flipped
- if either control qbit is |0〉, the target qbit is not flipped

Fun fact:

So why do we care?

Quantum computation doesn't let you compute more things — it lets you compute
some things faster by taking advantage of state superposition

You go from classical states (inputs) to classical states (outputs after measuring)
but taking "shortcuts" through superposed states

