
Review of
Dynamic Logic∗

Riccardo Pucella

Department of Computer Science
Cornell University

August 7, 2001

Introduction

In the 1960s, as programming languages were being used to write larger programs, those programs became harder
to understand, and people began to worry about issues such as correctness, that is, determining whether a program
computed what it was supposed to compute. As a consequence, researchers started to look into the pragmatics of
programming, leading among others to a criticism of the GOTO statement [2] and the development of structured pro-
gramming by Knuth and Wirth. These greatly helped writing programs that were easier to understand, but the issue of
showing program correct remained. Undoubtedly helped by the fact that programs had a cleaner structure, researchers
began investigating formal approaches to proving programs correct, or, in general, proving that programs satisfied
properties of interest. Most approaches involved deriving the proof of a property as one was writing the program,
taking advantage of the structured way these programs were written [3, 8]. These approaches were formalized, leading
to the total or partial correctness assertions of Hoare [10] or the weakest-precondition calculus of Dijkstra [3]. Essen-
tially, the logic of Hoare dealt with assertions{A}P{B} around a programP , indicating that ifAwere true, executing
programP would result inB being true. Inference rules indicated how to transform assertions about programs into
assertions about larger programs. For instance, if{A}P1{B} and{B}P2{C} were true, then one could infer that
{A}P1;P2{B} was true, with the intuitive reading ofP1;P2 as the sequential composition ofP1 andP2. Many more
formal systems along such lines were devised, and they collectively acquired the namelogics of programs, or program
logics.

In a 1976 landmark paper, Pratt recognized that many such program logics could best be understood as modal
logics, by essentially associating with every program a modal operator [13]. His idea was developed and refined
by Fischer and Ladner [6] and others, culminating into a particular form of program logic calledDynamic Logic.
Basically, the recognition of the relationship between program logic and modal logic allowed researchers to make use
of the vast array of results on modal logics.

The book “Dynamic Logic”, by Harel, Kozen, and Tiuryn, offers a self-contained introduction to the subject. The
earlier treatments on the subject are either dated, such as the survey by Harel [9] giving the state of the field in 1984,
or study Dynamic Logic as a non-trivial extension of modal logic [7]. The latter approach is much more abstract and
technically involved. In this review, I hope to give a taste for the subject by looking at its simplest incarnation, the
propositional variant of Dynamic Logic, called PDL. (The book describes both the propositional and the first-order
variants.) Following which, I will return to the structure of the book, and some personal opinions.

∗D. Harel, D. Kozen, J. Tiuryn,Dynamic Logic, MIT Press, 2000, 459pp, ISBN 0262082896.

1

Propositional Dynamic Logic

Let’s start from the basics. Recall (classical) propositional logic: start with a setΦ0 of primitive propositions
{p1, p2, . . .}, where a primitive proposition can be understood as a basic fact about which we want to reason, such as
“it is raining in Ithaca”, or “it is sunny in Ithaca”. We define the set of formulas of the logic by induction: a primitive
proposition is a formula, and ifϕ andψ are formula, so are¬ϕ andϕ ∧ ψ. We defineϕ ∨ ψ as an abbreviation for
¬(¬ϕ ∧ ¬ψ), ϕ ⇒ ψ as an abbreviation for¬ϕ ∨ ψ, andϕ ⇔ ψ as an abbreviation for(ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ). To
contrast with the logics we will soon introduce, we refer to this logic (and related ones) asstatic logics. Intuitively,
such logics are used to reason about “unchanging” conditions. Propositional modal logic is an extension of proposi-
tional logic that permits reasoning about modalities. Typical modalities historically studied by philosophers include
necessity, namely, that a formulaϕ is necessarily true (written�ϕ). One can discuss provability in such a framework,
interpreting�ϕ to mean “ϕ is provable”. Temporal logic is a logic to reason about time, where�ϕ is interpreted as “it
is always the case thatϕ” [4]. Epistemic logic is a modal logic to reason about knowledge, where�ϕ (often written
Kϕ) is interpreted as “the agent knowsϕ” [5]. Modal logic is a general framework for reasoning about such features,
and it was Pratt’s insight that one could reason about programs in such a setting. The intuition is to associate with
every programα a modal operator[α], and to interpret the formula[α]ϕ to mean “All halting executions of programα
result in a state satisfyingϕ”. (The programα may have many possible executions if it is nondeterministic.)

As we will be reasoning about programs, it is a good idea to focus on what the programs look like. We start with
an extremely simple language in which to express our programs. We take a setA = {a1, . . .} of primitive programs.
These are abstract operations we want our programs to perform.Regular programsare formed by sequencing other
programsα1;α2, by taking nondeterministic choices of programsα1 ∪ α2, or by loopingα∗ (meaning repeating
programa 0 or more times, nondeterministically).1 We define a logic called PDL (for Propositional Dynamic Logic)
to reason about such programs. The syntax of the logic distinguishes between programs and formulas, both sets
defined by mutual induction. We define the set of programs essentially as above: a primitive program is a program; if
α andβ are programs, so areα;β, α ∪ β, andα∗; moreover, ifϕ is a formula, thenϕ? is a program. We define the
set of formulas as follows: a primitive proposition is a formula; ifϕ andψ are formulas, so are¬ϕ andϕ ∧ ψ; if α
is a program andϕ is a formula, then[α]ϕ is a formula. Intuitively, the meaning of programs and formulas should be
clear. We have seen how programs are interpreted. The programϕ? checks whether formulaϕ holds at the current
state of the program. If it does, the program terminates. Otherwise, it blocks. Formulas keep the interpretation they
have in propositional logic, with the added understanding that[α]ϕ means to execute programα and check ifϕ holds
whenever the program halts. We write〈α〉ϕ as an abbreviation for¬[α]¬ϕ; one reading of〈α〉ϕ is “at least one halting
execution ofα results in a state satisfyingϕ.”

Note that we can write some fairly involved formulas using this setup. If we do not put any restrictions on theϕs
that can appear in programs of the formϕ?, we can write formulas such as[[α]ψ?;β]ϕ, which says that if all halting
executions ofα result in a state whereψ holds, then all halting executions ofβ result in a state whereϕ holds. It
seems counterintuitive for our programs to be able to perform speculative execution in that way, especially since such
properties have a tendency to be undecidable for any reasonable programming language. If we restrict PDL to only
allow as test formulas those in which no modal operator appears (in other words, a formula in a test can only be a
boolean combination of primitive propositions), we call the logicpoor test PDL. In contrast, the unrestricted version
is calledrich test PDL.

At this point, our logic is just a syntax for writing formulas with an intuitive understanding of what they mean. We
can formalize our intuitions about the logic by writing down axioms and inference rules—essentially the properties of
the logic. Given our intuitive understanding of the meaning of formulas, we can come up with the following axioms
for the logic:

1. axioms for propositional logic

2. [α](ϕ⇒ ψ) ⇒ ([α]ϕ⇒ [α]ψ)

3. [α](ϕ ∧ ψ) ⇔ [α]ϕ ∧ [α]ψ

1Hence the name regular programs: consider a program as a regular expression and letL be the language (overA) generated by the regular
expression; each sentence inL is a possible trace or execution of the program.

2

4. [α ∪ β]ϕ⇔ [α]ϕ ∧ [β]ϕ

5. [α;β]ϕ⇔ [α][β]ϕ

6. [ψ?]ϕ⇔ (ψ ⇒ ϕ)

7. ϕ ∧ [α][α∗]ϕ⇔ [α∗]ϕ

8. ϕ ∧ [α∗](ϕ⇒ [α]ϕ) ⇒ [α∗]ϕ

The following inference rules are also used:

ϕ ϕ⇒ ψ
ψ

ϕ
[α]ϕ

.

We sayϕ is provable (writteǹ ϕ) if ϕ is derivable from the axioms and the inference rules given above.
At this point, note that all we have done is playing with syntax. We have no way of saying whether a given formula

is true or not. It was Tarski’s great contribution in the 1930s to point out that semantics can be used to discuss truth of
formulas in a logic, independently of any axiom system. One gives a semantics for a logic by exhibiting amodelfor
the formulas in the logic, telling us how to assign truth values to formulas. Models for PDL are derived from models
for general modal logics due to Kripke [12]. (Indeed, this was one reason for the interest in casting program logics in
a modal framework.) Essentially, a model is a set of states; think of all the states a program could be in. Programs take
us from one state to another, and at every state we have an interpretation function telling us what primitive propositions
are true at that state. General formulas will express properties of moving through that state space. Formally, a model
M is a tuple(S, π, σ) whereS is a set of states,π is an interpretation function assigning a truth value to each primitive
propositionp at each states, i.e.π(s)(p) ∈ {true, false}, andσ associates to every primitive program a binary relation
on the set of states. Intuitively,(s1, s2) ∈ σ(a) if executing the primitive programa in states1 leads to states2. Our
first step is to extendσ to all programs by posing:

σ(α;β) = σ(α) ◦ σ(β),

σ(α ∪ β) = σ(α) ∪ σ(β),

σ(α∗) =
⋃

n≥0 σ(α)n.

ForR andS binary relations, we writeR◦S for the relation{(u, v) : ∃w.(u,w) ∈ R, (w, v) ∈ S}, andRn is defined
inductively withR0 the identity relation, andRn+1 = Rn ◦R.

Using these definitions, we define what it means for a formulaϕ to be true (orsatisfiable) in states of a modelM ,
written (M, s) |= ϕ, by induction on the structure ofϕ. Note that my notation is slightly different from the one in the
book, but more in keeping with traditional modal logic presentations.

(M, s) |= p for a primitive propositionp if π(s)(p) = true,

(M, s) |= ¬ϕ if (M, s) 6|= ϕ,

(M, s) |= ϕ ∧ ψ if (M, s) |= ϕ and(M, s) |= ψ,

(M, s) |= [α]ϕ for a programα if for all s′ such that(s, s′) ∈ σ(α), (M, s′) |= ϕ.

A formula [α]ϕ is true at a states if for all statess′ that can be reached by executing the programα, at states, ϕ holds.
We can verify that〈α〉ϕ holds at a states if and only if there is at least one state that is reachable by programα from
states such thatϕ holds in the state, hence justifying our intuitive reading of〈α〉ϕ.

If a formulaϕ is true at all the states of a modelM , we say thatϕ is valid inM and writeM |= ϕ. If a formulaϕ
is valid in all models, we sayϕ is valid, and write simply|= ϕ.

We now have two distinct ways of reasoning in the logic: syntactically, by using the provability relation, and
semantically, by reasoning about the truth of formulas. Ideally, we would like these two approaches to yield equivalent
results. The properties relating the` and|= relations are called soundness and completeness. An axiomatization for

3

a logic issoundif anything provable is valid: formally, if̀ ϕ implies |= ϕ. This property allows us to safely reason
syntactically: anything we can prove will be true. An axiomatization iscompleteif anything valid is in fact provable:
formally, if |= ϕ implies` ϕ. Completeness guarantees us that if there is anything interesting we want to say, we can
in fact derive it syntactically. One of the core foundational results related to PDL is that the axiomatization above is
sound and complete for the Kripke models introduced above.

As we noted, the logic we described above treats programs as sequences of abstract primitive programs. One can
say much more interesting and precise things by considering actual operations on an actual state. The typical approach
is to consider a set of variables and take a state to be an assignment of values to those variables (also known as a
valuation), where the values are taken from a fixeddomain of computation. The primitive programs in such a setting
are simply assignments of values to variables. Intuitively, the primitive programx := 3 will make a transition from
any given state to a state which has the same valuation but for the fact that variablex is associated with the value
3. To reason about such programs, we can extend our logic to a first-order logic, simply called Dynamic Logic. On
the logic side, we replace the primitive propositions by a first-order vocabulary of predicate and function symbols. A
predicate takes the formr(t1, . . . , tn) for termst1, . . . , tn. A term is either a variable or a function symbol applied to
other terms. The interpretation of predicate and function symbols is as in first-order predicate logic: they correspond
respectively to relations and functions over the domain of computation. We further allow quantification over variables,
so that∀x.ϕ is an allowed formula. (As usual, we write∃x.ϕ for ¬∀x.¬ϕ.) For example, if we assume a standard
interpretation for the equality predicate, the formula∀y.〈x := 3〉y = x will be true in any state with a valuation
assigning the value 3 to all variables except possiblyx. For a full formalization of the logic, its semantics, and its
properties, I will at this point refer to the book.

The book

The book is divided in three parts. The first part is meant to make the book essentially self-contained, by providing the
necessary background material needed for the presentation of Dynamic Logic. At a full one hundred and fifty pages,
it makes up almost half of the book. The second part focuses on the propositional variant of Dynamic Logic, while the
third part focuses on the first-order variant.

Chapter 1,Mathematical Preliminaries, is the obligatory review of basic mathematical ideas from discrete math-
ematics, such as sets, relations, graphs, lattices, transfinite ordinals, and set operators.

Chapter 2,Computability and Complexity , reviews the relevant topics from the theory of computation. Among
others, it looks at computational models including deterministic, nondeterministic, and alternating Turing machines,
the characterization of undecidable problems, and reviews the basic complexity classes, discusses the arithmetic and
analytic hierarchies, and first-order inductive definability. It also reviews the basic notions of problem reducibility and
completeness, and presents a family of tiling problems, shown complete for various complexity classes.

Chapter 3,Logic, thoroughly reviews the basic notions of logic. It introduces several classical logical systems:
propositional logic, equational logic (the logic of equality), first-order predicate logic, infinitary logic (a variant of
predicate logic that allows some infinite expressions), and modal logic. For each system, syntax and semantics are
discussed, as well as axiomatizations and elementary results.

Chapter 4,Reasoning About Programs, defines the programming framework assumed throughout the book. It
defines the kind of programs studied, namely state-based imperative programs, with a focus on the input/output relation
of a program. It discusses the program constructs appearing in the study of Dynamic Logic: while programs, regular
programs, recursion, r.e. programs, nondeterminism. It defines the notion of partial and total correctness (partial
correctness does not stipulate that a program halts, total correctness does), and introduces Hoare Logic.

Chapter 5,Propositional Dynamic Logic, starts the study of PDL, the propositional variant of dynamic logic. It
gives the syntax and semantics of PDL, discusses the axiomatization given above, proves it is sound with respect to
the semantics, and proves various properties of the logic, with a special focus on the iteration operator∗ that makes
the whole logic nontrivial. It also shows how to faithfully encode Hoare Logic in PDL: intuitively, the Hoare Logic
assertion{ϕ}α{ψ} corresponds to the PDL formulaϕ⇒ [α]ψ.

Chapter 6,Filtration and Decidability , establishes one of the most significant and surprising results for PDL,
the so-calledSmall Model Theorem: if a formulaϕ is satisfiable, then it is satisfiable in a finite model with a small
number of states, exponential in the size ofϕ. A standard technique from modal logic,filtration, is used to establish

4

this result—although the technique has to be adapted because of the special nature of the iteration operator. The Small
Model Theorem is surprising because PDL is not compact: an infinite set of formulas can be finitely satisfiable while
not being satisfiable, because of the iteration operator.2 The classical example of such a set of formulas is the set
{〈α∗〉ϕ} ∪ {¬ϕ,¬〈α〉ϕ,¬〈α2〉ϕ, . . .}. However, it turns out that the iteration operator, albeit infinitary in nature,
is still uniform enough in its effect to give a Small Model Theorem. This theorem yield as a consequence that it is
decidable to determine if a formula is satisfiable: just enumerate all the finite models containing up to2|ϕ| states, and
check ifϕ holds in any of them.

Chapter 7,Deductive Completeness, establishes that the axiomatization given above is complete with respect
to the semantics of PDL. This is achieved by showing that a consistent formulaϕ is satisfiable. The proof follows
the canonical model structure of completeness proofs for modal logic, but with a twist. We first build a canonical
nonstandardmodel forϕ. A nonstandard model is one where the relation corresponding to the iteration operator, i.e.
σ(α∗), is not the transitive reflexive closure ofσ(α); rather, we simply require that∪n≥0σ(α)n ⊆ σ(α∗). We then
collapse the nonstandard model into a standard model by filtration.

Chapter 8,Complexity of PDL, revisits the decidability of the satisfiability problem, showing that the problem
has a more efficient algorithm than the naive one presented in Chapter 6, by giving an EXPTIME algorithm for
satisfiability. This is basically as good as it gets, as satisfiability for PDL is shown to be EXPTIME-complete.

Chapter 9,Nonregular PDL, explores what happens when we allow nonregular operators in programs. An easy
result is that any nonregular operator yields a logic strictly more expressive than PDL. Unfortunately, it does not take
much for satisfiability to become undecidable. The bulk of the chapter is devoted to establishing a “threshold” between
decidable and undecidable extensions. For example, PDL over context-free programs is undecidable.

Chapter 10,Other Variants of PDL , examines variants of PDL studied in the literature, including deterministic
PDL (where we disallow various forms of nondeterminism, either syntactically or semantically) and automata PDL
(where programs are finite-state machines), programs with various restrictions on allowable tests, programs with com-
plementation or intersections, programs with a converse operator, logics with well-foundedness and halting predicates,
and extensions to model concurrency.

Chapter 11,First-Order Dynamic Logic , starts the study of the first-order variant of Dynamic Logic. As we
noted above, first-order Dynamic Logic adds a domain of computation to the logic. States are no longer abstract,
but are taken as a valuation for variables. Primitive programs are no longer abstract, but consist of assignment to
variables. Variables also appear at the level of formulas, where they can be quantified over as in first-order predicate
logic. Also as in first-order predicate logic, we have a first-order vocabulary consisting of predicate and function
symbols, interpreted over the domain of computation. The chapter first discusses the classes of programs considered.
This requires more care than in PDL because of the added level of details in the syntax of programs. Regular programs
are defined as in PDL, but extensions include arrays, stacks, and wildcard assignment (i.e. an assignment of the form
x :=?). The semantics of first-order Dynamic Logic are given, necessarily more involved than for its propositional
variant. Essentially, one defines a first-order structure for the vocabulary, specifying the interpretation of the predicate
and function symbols. This structure is turned into a Kripke structure by considering as the states the valuations of the
variables. As in PDL, programs are binary relations between states, and formulas are given a meaning at particular
state using the interpretation of the predicate and function symbols, as well as the valuation for the variables.

Chapter 12,Relationships with Static Logics, investigates an aspect of Dynamic Logic peculiar to its first-order
variant. Reasoning can take two forms: uninterpreted (involving properties independent of the domain of computa-
tion), and interpreted (where one focuses on a particular domain or class of domains). This dichotomy permeates the
rest of the book. Some basic properties of first-order predicate logic are shown to fail to hold: the Löwenhein-Skolem
theorem, completeness, and compactness. Comparisons are then made between uninterpreted first-order Dynamic
Logic and infinitary logics. To study Dynamic Logic at the interpreted level, the chapter focuses on a particular do-
main of computation, the natural numbers with the usual arithmetic operations. Comparisons with infinitary logics are
also made.

Chapter 13,Complexity, addresses the complexity of first-order Dynamic Logic. More precisely, the difficulty
of determining the validity of formulas at either the uninterpreted or the interpreted level is studied, for a variety of
Dynamic Logics over the programming languages of Chapter 11. The expressiveness results of Chapter 12 can be used

2A set of formulasF is satisfiable if there exists a modelM and a states such that(M, s) |= ϕ for everyϕ ∈ F ; a set of formulasF if finitely
satisfiable if every finite subset ofF is satisfiable.

5

to give rough bounds, by looking at the difficulty of determining validity for various infinitary logics. (Clearly, because
Dynamic Logic subsumes first-order predicate logic, validity is undecidable; the question is: how undecidable?) The
chapter also introduces the spectral complexity of a programming language. Roughly speaking, this notion provides
a measure of the complexity of the halting problem for a programming language. The spectral complexity of the
languages introduced in Chapter 11 is investigated.

Chapter 14,Axiomatization, studies axiomatizations of first-order Dynamic Logic. By the results of Chapter 13,
since the validity problem for both the uninterpreted and interpreted levels of Dynamic Logic are highly undecidable,
one cannot hope to find a nice finitary axiomatization. (This is a basic result from mathematical logic.) This does
not prevent one to derive an infinitary axiomatization, including, for instance, inference rules with infinitely many
premises. Such a complete axiomatization is given for uninterpreted first-order Dynamic Logic. Similar axiomatiza-
tions are given for the interpreted level, although in this case completeness is taken to be relative to an arithmetical
structure.

Chapter 15,Expressive Power, studies the relative expressive power of languages. This can be done for the unin-
terpreted level, by comparing Dynamic Logics over both languages in terms of logical expressibility. By comparing
the expressive power of logics, as opposed to the computational power of programs, one can compare for example
deterministic and nondeterministic languages. The fundamental connection between expressive power of logics and
spectral complexity is explored. The impact of nondeterminism, bounded or unbounded memory, various kinds of
stacks, and wildcard assignments is investigated.

Chapter 16,Variants of DL , considers restrictions and extensions of Dynamic Logic. The interest is mainly
in questions of expressive on the uninterpreted level. Discussed are Algorithmic Logic (a predecessor of Dynamic
Logic), Nonstandard Dynamic Logic (allowing nonstandard models of time by referring only to first-order properties
of time when measuring the length of a computation), an extension of Dynamic Logic with well-foundedness and
halting assertions, Dynamic Algebra (an abstract algebraic framework corresponding to PDL), probabilistic variants
of Dynamic Logic, and extensions to handle concurrency and communication.

Chapter 17,Other Approaches, explores topics closely related to Dynamic Logic. Dynamic Logic is related to
Temporal Logic; the main differences being that in Temporal Logic, programs are not explicit in the language, but one
can reason about intermediate states of a computation. Process Logic is introduced, essentially a combination of both
Dynamic Logic and Temporal Logic. Process Logic uses explicit programs like Dynamic Logic, but moreover provides
a way to reason about the intermediate states reached by a program through its temporal operators. Theµ-calculus
is introduced, which uses as its central expressive feature an operator to compute least fixpoints. The propositional
variant, known as the modalµ-calculus, subsumes all known variants of PDL, and various forms of Temporal Logics,
while having a simpler syntax. The modalµ-calculus, has become popular for the specification and verification of
properties of transition systems. Finally, Kleene algebras (the algebra of regular expressions) and its extension with
tests, can be used to carry out simple program manipulations. The advantage is that Kleene algebras form a purely
equational subsystem, apparently less complex than PDL (given all known complexity theory results).

Overall, the book is well-paced. The one hundred and fifty pages of background material on computability theory
and logic may seem daunting, but in the long run will be appreciated. You can skim over many of the background
sections if you are familiar with the material, once you have figured out the particular notation and terminology of the
authors.

The description of PDL in part II of the book is technical (it is after all, a book on logic), but easy to follow, with
every detail put down on paper. Part III on first-order Dynamic Logic requires a notably more careful reading, both
because the material is more complex, and because the treatment is denser. It is especially in that part that following the
bibliographical references at the end of every chapter becomes useful, even necessary, for a thorough understanding.

The book should be of interest mainly to students and researchers interested in program verification. It offers
interesting features for logicians and philosophers as well, as Dynamic Logic is a nontrivial extension of modal logic.
As the “programs” studied in Dynamic Logic need not be typical programs, but any formalized notion of action,
Dynamic Logic is well suited for reasoning about actions and their effects, with obvious applications to artificial
intelligence, and to normative system specification (where it can be taken as a basis for deontic logic).

The book has been used as the basis for graduate courses; depending on the mathematical maturity of the students,
a fair amount of material can be covered. The main determining factor being their previous exposure to mathematical
logic. As PDL (resp. Dynamic Logic) extends propositional (resp. first-order predicate) logic, both syntactically and

6

semantically, previous exposure greatly helps, as does exposure to modal logic.
As I stated in the introduction, this book has the decisive advantage of focusing exclusively on Dynamic Logic.

Other treatments are often studied after a thorough exploration of modal logic, including the temporal variants. This
leads to deep, but difficult to follow treatments for the beginner.

Especially interesting is that the book, while being an entry-level introduction to the subject, does point to active
areas of research. Particularly relevant are the application of Kleene algebra as a more tractable theory of program
transformations; it is currently being used to verify and reason about compiler optimizations [11]. Process Logic is
needed if one is interested in reasoning about nonterminating programs, but it has not received much attention lately.
Finally, theµ-calculus is currentlyen voguein the model checking community, where one is interested in verifying
transition systems [1], leading to practical considerations driving research. This book can be seen as an introduction
to the underlying ideas needed for a thorough understanding of theµ-calculus as a specification language.

References

[1] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. The MIT Press, 1999.

[2] E. W. Dijkstra. Go To statement considered harmful.Communications of the ACM, 11(3):147–148, March 1968.

[3] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[4] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of Theoretical Computer
Science, Volume B, pages 995–1072. The MIT Press / Elsevier, 1990.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning about Knowledge. The MIT Press, 1995.

[6] M. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs.Journal of Computer and System
Sciences, 18(2):194–211, 1979.

[7] R. Goldblatt.Logics of Time and Computation. CSLI Lecture Notes, No. 7. CSLI, 1992.

[8] D. Gries.The Science of Programming. Springer-Verlag, 1981.

[9] D. Harel. Dynamic logic. In Gabbay and Guenthner, editors,Handbook of Philosophical Logic. Volume II:
Extensions of Classical Logic, pages 497–604. Reidel, 1984.

[10] C. A. R. Hoare. An axiomatic basis for computer programming.Communications of the ACM, 12:576–580, 583,
1969.

[11] D. Kozen and M.-C. Patron. Certification of compiler optimizations using Kleene algebra with tests. InProc.
1st Int. Conf. Computational Logic (CL2000), volume 1861 ofLecture Notes in Artifical Intelligence, pages
568–582. Springer-Verlag, 2000.

[12] S. Kripke. A semantical analysis of modal logic I: normal modal propositional calculi.Zeitschrift f̈ur Mathema-
tische Logik und Grundlagen der Mathematik, 9:67–96, 1963.

[13] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. InProceedings of the 17th Symposium on the
Foundations of Computer Science, pages 109–121. IEEE Computer Society Press, 1976.

7

